Rapid self-assembly of DNA on a microfluidic chip
نویسندگان
چکیده
BACKGROUND: DNA self-assembly methods have played a major role in enabling methods for acquiring genetic information without having to resort to sequencing, a relatively slow and costly procedure. However, even self-assembly processes tend to be very slow when they rely upon diffusion on a large scale. Miniaturisation and integration therefore hold the promise of greatly increasing this speed of operation. RESULTS: We have developed a rapid method for implementing the self-assembly of DNA within a microfluidic system by electrically extracting the DNA from an environment containing an uncharged denaturant. By controlling the parameters of the electrophoretic extraction and subsequent analysis of the DNA we are able to control when the hybridisation occurs as well as the degree of hybridisation. By avoiding off-chip processing or long thermal treatments we are able to perform this hybridisation rapidly and can perform hybridisation, sizing, heteroduplex analysis and single-stranded conformation analysis within a matter of minutes. The rapidity of this analysis allows the sampling of transient effects that may improve the sensitivity of mutation detection. CONCLUSIONS: We believe that this method will aid the integration of self-assembly methods upon microfluidic chips. The speed of this analysis also appears to provide information upon the dynamics of the self-assembly process.
منابع مشابه
Self-assembled magnetic bead chains for sensitivity enhancement of microfluidic electrochemical biosensor platforms.
In this paper, we present a novel approach to enhance the sensitivity of microfluidic biosensor platforms with self-assembled magnetic bead chains. An adjustable, more than 5-fold sensitivity enhancement is achieved by introducing a magnetic field gradient along a microfluidic channel by means of a soft-magnetic lattice with a 350 μm spacing. The alternating magnetic field induces the self-asse...
متن کاملFabrication and Self-assembly of Movable Microstructures Embedding Cells inside Microfluidic Devices
Currently the research about large quantities cells assembly is seriously regarded, since it can provide high efficiency methods for artificial tissue engineering. In this paper, we report a cell assembly method based on cell immobilization by photo-crosslinkable resin and microfluidic self-assembly inside microfluidic devices. The on-chip fabrication of movable microstructures embedding yeast ...
متن کاملMicrofluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents.
We present a microfluidic platform for the synthesis of monodisperse chitosan based nanoparticles via self-assembly at physiological pH. The resultant nanoparticles are shown to encapsulate hydrophobic anticancer drugs while providing a sustainable release profile with high tunability.
متن کاملMicrofluidic nanoplasmonic-enabled device for multiplex DNA detection.
We describe a rapid, quantitative, multiplex, self-labelled, and real-time DNA biosensor employing Ag nanoparticle-bound DNA hairpin probes immobilized in a microfluidic channel. Capture of complementary target DNAs by the microarrayed DNA hairpin probes results in a positive fluorescence signal via a conformational change of the probe molecules, signalling the presence of target DNAs. The devi...
متن کاملDiamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Nanobiotechnology
دوره 3 شماره
صفحات -
تاریخ انتشار 2005